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Abstract We investigate return times in dynamical systems, i.e. the time required by a tra-
jectory to complete a return journey to a neighborhood of the initial position. In particular,
we study the relations holding between the scaling exponents of phase-space moments of
return times in balls of diminishing radius, on the one side, and the generalized dimensions
of invariant measures, on the other. Because of a heuristic use of Kac theorem, the former
have been used in place of the latter in numerical and experimental investigations: to mark
the distinction, we call them return time dimensions. We derive a full set of inequalities
linking generalized dimensions of invariant measures and return time dimensions. We com-
ment on their optimality with the aid of two maps due to von Neumann–Kakutani and to
Gaspard–Wang. We conjecture a formula for the return time dimensions in a typical system.
We only assume that the dynamical system under investigation is ergodic and that motion
takes place in a compact, finite dimensional space.

Keywords Renyi spectrum · Hentschel-Procaccia dimensions · Return times · Return time
dimensions · Recurrence

1 Introduction: Statement of the Problem and Previous Results

The metric theory of dynamical systems is based on the study of a transformation T of a
space X into itself, that preserves a probability measures μ on a suitable sigma algebra A.
We assume throughout this paper that the dynamical system (X,T , A,μ) under investigation
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is ergodic and that X is a compact metric space enclosed in Rn. This case is general enough
to cover many practical applications. From a physical point of view, μ may be thought of
as the invariant distribution, in the space X, of points of a typical trajectory of the system,
generated by repeated applications of the map T on a starting point x.

Our interest lies in return times of the motion. Let A ∈ A be a measurable subset of X of
positive measure. Later on, we shall choose A to be a ball, that is, a circular neighborhood
of a point. Let x be any point in A. We denote by τA(x) the (integer) time of the first return
of x to the set A:

τA(x) = inf{n > 0 s.t. T n(x) ∈ A}. (1)

Return times and invariant measures are linked by a variety of results that stand on the
pillars of the classical theorems of Poincaré and Kac [29]. The first guarantees that the
return time of a point x to the set A is finite, almost surely with respect to any invariant
measure μ; the second links the average time needed for recurrence of points in the set A to
the inverse of the measure of A. On these bases, it was conjectured long ago by Grassberger
[11] and independently by Jensen et al. [21] that the statistical moments of return times,
when averaged over balls of radius ε, centered at all points of a typical trajectory (therefore,
not uniquely fixed as in Poincaré and Kac theorems), have a power-law scaling behavior,
when ε tends to zero, with exponents proportional to the generalized dimensions of the
measure μ.

Generalized dimensions of measures, defined à la Hentschel–Procaccia [2, 3, 8, 11, 12,
19, 34], have a large importance in dynamical systems, see Pesin [27] for a comprehensive
review. Their computation is a task of practical and theoretical relevance, for which many
alternative techniques have been proposed. Therefore, Grassberger and Jensen et al. idea
offers a most interesting alternative in this respect.

Indeed, the original conjecture of has become implicit usage in successive investigations,
that have computed generalized dimensions from the statistics of return times. Yet, even
before the most recent applications and extensions of this technique [13, 15], this approach
has been critically examined in [23]. Stimulated by these findings, we have tried to answer
a fundamental question that has frequently been overlooked: whether the conjecture is rig-
orous and whether it is exact in certain cases, the former obviously implying the latter. In
order to disambiguate this point, in this paper we shall call return time dimensions the val-
ues obtained from the scaling exponent of averages of return times, and we shall investigate
whether they are equal to measure generalized dimensions.

Before getting into details, observe that the conjecture is bold: generalized measure di-
mensions are defined independently of the dynamics, while return times obviously are. Put
in another way, the same measure (characterized by a spectrum of Hentschel–Procaccia–
Pesin generalized dimensions) can be the equilibrium measure of quite different dynamical
systems. Precisely because of this, studying the relations holding among the two sets of di-
mension is interesting, independently of the validity of the above conjecture, since it leads
to “universal” results that hold for all dynamical maps T for which a given measure μ is
invariant and ergodic.

In a first paper [18] we have studied this problem for invariant measures supported on
attractors of Iterated Function Systems. The scope of this work has been successively en-
larged in [6] by the analysis of return (and entrance) times in dynamical cylinders (rather
than balls) for Bowen–Gibbs measures. Relying on precise approximations to the local sta-
tistics of return times obtained in [1], the situation for entrance times (a variant of the ap-
proach mentioned above) has been almost completely clarified, while that for return times
has been settled only for indices q < 1 (see below for definitions and further discussions).
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Results concerning return times in cylinders and their fluctuations are numerous: see e.g.
[7, 32]. For the class of super-disconnected I.F.S. cylinders and balls are in a strict rela-
tion, described in [18]. Yet, in the general case, the problem of return times in balls, rather
than cylinders, remains completely open and it is arguably the most relevant to practical and
numerical applications.

In this paper we advance the analysis of this problem by proving rigorous bounds holding
in full generality between measure dimensions and those obtained via return times. In fact,
we do not require any additional property (like e.g. Bowen–Gibbs) on the dynamical system
under consideration, other than those listed at the beginning of this section. In the course of
this analysis we will also consider the comparison between generalized dimensions and their
box versions, commonly used in numerical simulations. We shall introduce new box quanti-
ties which will be shown to be optimal, both for measure and for return time dimensions, in
the sense that they yield exactly the full spectrum of generalized dimensions. In addition to
their rôle in numerical computations, these quantities also offer distinctive advantages in the
theoretical analysis. Finally, by analyzing the case of two significant one-dimensional maps,
we shall demonstrate the optimality of the derived inequalities and we shall put forward a
conjecture on the behavior of return times dimensions in a “typical” case.

On the contrary, we shall not consider the problem of the multifractal decomposition, i.e.
whether dimensions are linked to the so-called f (α) spectrum [16, 24, 28]. It must also be
underlined the difference of this problem—the global statistics of return times—with the
much more investigated case of the local statistics, that consider the distribution of return
times of points in a nested sequence of neighborhoods of a single point: see e.g. [1, 17, 20,
25, 32] and references therein.

2 Definitions, Structure of the Paper and Brief Summary of Results

We start by giving formal definitions of generalized dimensions (a variety of possibilities
can be found in the literature). Let Bε(x) be the ball of radius ε at x and q a real quantity
different from one. The partition functions Γμ(ε, q) and Γτ (ε, q) are the integrals

Γμ(ε, q) :=
∫

X

[μ(Bε(x))]q−1dμ(x), (2)

Γτ (ε, q) :=
∫

X

[τBε(x)(x)]1−qdμ(x). (3)

If the integrand is not summable, we shall understand that the value of the partition func-
tion is infinite. The symmetry between the two definitions is apparent and betrays the idea
behind the approach mentioned in the Introduction: the measure of a ball appearing in (2)
is replaced in (3) by the inverse of the return time of the point at its center. Remark that the
integral in (3) can be computed by a Birkhoff sum over a trajectory [18, 23], as in the orig-
inal proposals [11, 21]. Remark also that the actual numerical computations for [11] were
performed with Birkhoff sums of the kind

∑
i,j τ

1−q

Bε(xi )
(xj ) (P. Grassberger, private commu-

nication) and therefore they were estimates of the integral
∫ [τBε(x)(y)]1−qdμ(x)dμ(y). This

amounts to computing entrance (rather than return) times.
The generalized dimensions D±

σ (q) are defined via the scaling of partition functions for
small ε:

Γσ (ε, q) ∼ εD±
σ (q)(q−1), (4)
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where the symbol σ from now on denotes either μ or τ . More precisely, one has that, for
q �= 1,

D±
σ (q) := lim sup(inf)

1

q − 1

logΓσ (ε, q)

log ε
. (5)

For q = 1, as usual, slightly different definitions are needed:

D±
σ (1) := lim sup(inf)

Γ l
σ (ε)

log ε
, (6)

where

Γ l
μ(ε) :=

∫
X

log[μ(Bε(x))], (7)

Γ l
τ (ε) :=

∫
X

log[τ−1
Bε(x)(x)]. (8)

As noted, partition functions may be infinite: in such case we shall also set equal to infinity
the corresponding generalized dimensions.

The central question addressed in this paper is the nature of the relations between the two
sets of dimensions: are they equal, always or in certain cases at least? Can a set of rigorous
inequalities among them be derived?

The results of this paper are organized as follows. In the next section we briefly outline
basic properties (monotonicity, convexity) of return time generalized dimensions. Then, we
shall find it convenient to introduce a number of additional quantities, that we shall also
call dimensions and that are interesting on their own. Some of these dimensions are conven-
tional, some are new. In Sect. 4 we start by defining box dimensions, Δ±

μ(q) and Δ±
τ (q), for

measure and return times, respectively, following typical usage in experimental and numer-
ical applications: partition functions are defined in relation to partitions of the space X into
cubic boxes, and limits are taken with respect to the finesse of the partition.

In Sect. 5 we review the known relations between box and generalized dimensions of
measures and we describe a proposal put forward by Riedi [31] to avoid “pathological”
values of box dimensions for negative q . By a modification of his idea we define a new
box partition function that offers a definite theoretical advantage over both the original box
quantities and Riedi’s enhanced box formalism: its scaling yields the generalized dimensions
D±

μ (q) for all values of q , independently of the particular grid adopted. This is made formal
in Theorem 1, that, although not directly related to return times, constitutes one of the main
results of this paper.

While the previous results deal with measure dimensions, in Sect. 6 we consider the
relations between generalized and box dimensions for return times: Proposition 1 shows that
the latter are always larger than, or equal to, the former. Mimicking the procedure developed
for measures, we introduce a box quantity that yields exactly the generalized return time
dimensions D±

τ (q), again for all values of q , independently of the particular grid adopted:
this is the content of Theorem 2. The rôle of the new partition function introduced in this
section is not restricted to numerical simulation: it will be one of the main tools in the proof
of two theorems in Sect. 9.

We then put in relation measure and return time dimensions, according to the theme of
this paper. Section 7 introduces a central quantity to this goal: the distribution of return times
into a fixed set A in the space X. The zeroth and first moment of this distribution are fixed
by Poincaré and Kac theorems. Basic inequalities are derived for the remaining moments:



The Global Statistics of Return Times: Return Time Dimensions 705

Lemma 5, that can be seen as a sort of generalized Kac theorem. We stress again that this is
obtained in the most general setting.

These results are put at work in Sect. 8: inequalities between measure and return box
dimensions are derived for all values of q and equality is found for q = 0: Proposition 3
gives full detail.

Section 9 is the heart of the paper. There, we chain together our results in Theorem 3,
that presents the most complete set of inequalities—that we have been able to prove in full
generality—among generalized and box dimensions, of measures and return times:

Theorem 3 When the dynamical system (X,T , A,μ) is ergodic and X is a compact metric
space enclosed in Rn, for any grid θ ∈ Θ , the dimensions defined in this work are linked
by the inequalities: for q > 0 one has that D±

τ (q) ≤ Δ±
τ (θ, q) ≤ Δ±

μ(q) = D±
μ (q), while for

q ≤ 0 one finds Δ±
τ (θ, q) ≥ Δ±

μ(θ, q) ≥ D±
μ (q) and Δ±

τ (θ, q) ≥ D±
τ (q). Finally, for q = 0,

the equality Δ±
τ (θ,0) = Δ±

μ(θ,0) holds.

In the same section, we discuss the optimality of the inequalities presented. We study
the role of short returns, that imply an upper bound for positive dimensions, described in
Lemma 7. We also investigate the different situations occurring for positive and negative
values of q and we compute return time dimensions in two interesting cases: in full detail
for the von Neumann–Kakutani map [35] (Theorem 4) and, partly, for the Gaspard–Wang
intermittent map [9] (Theorem 5). Also in this section we formulate a conjecture on the
typical behavior of return time generalized dimensions that links it significantly to measure
generalized dimensions.

Conclusions are presented briefly in Sect. 10, while three additional sections, 11, 12 and
13 contain the details of the calculations and proofs for the two maps quoted above, as well
as side results of some interest.

3 General Properties of Return Time Dimensions

Because of the formal similarity between (2) and (3) some of the properties of general-
ized measure dimensions also characterize return time dimensions. A couple of these are
contained in the following lemma.

Lemma 1 The return time generalized dimensions D±
τ (q) are monotone non increasing

functions of the index q , and the functions (q − 1)D−
τ (q) for q > 1 and (q − 1)D+

τ (q) for
q < 1 are convex.

Proof Observe that both Γμ(ε, q) and Γτ (ε, q) can be seen as integral of a function φ(x)

raised to the power q − 1. In the return time case this latter is φ(x) = 1/τBε(x)(x). The two
results above are then a consequence of Jensen and Holder inequalities, similar to those
holding for D±

μ (q), whose details can be found in [4, 33]. �

Additional results can be obtained in this line, but will be reported elsewhere. In fact,
our specific aim in this paper is simply to compare the value of measure and return time
dimensions. In this regard, finiteness of the return time dimensions is an important issue that
will be considered in Sects. 6 and 9.
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4 Box Dimensions of Measures and of Return Times Distributions

Usually, in numerical experiments, rather than computing the integral (2) one covers the set
X ⊂ Rn by a lattice of hypercubic boxes Aj , j = 0,1, . . . of side ε. The usual choice is to
draw the zeroth box as having the origin of the coordinates as a corner and the sides exiting
from that corner oriented as the coordinate directions. Clearly, different choices are possible,
varying origin and orientation. We shall let θ ∈ Θ denote the particular choice of origin and
orientation in the set Θ of all choices. θ will be called a grid. Therefore, a grid consists of
infinitely many box partitions of X, one for every value of ε.

We then consider in place of the partition functions Γμ(ε, q), the sums

Υμ(θ, ε, q) :=
∑

j s.t. μ(Aj )>0

μ(Aj )
q . (9)

For simplicity of notation, the dependence of Aj on θ and ε will be left implicit here and in
the following.

Similarly, by replacing in (3) the box centered at x with the set Aj that contains x, we
define the return time box partition function:

Υτ (θ, ε, q) :=
∑

j

∫
Aj

τ
1−q

Aj
(x)dμ(x). (10)

It has to be noticed the double role of the set Aj , as starting and arrival set of the motion.
We shall break this symmetry later on. The logarithmic analogues are

Υ l
μ(θ, ε) :=

∑
j s.t. μ(Aj )>0

μ(Aj ) log[μ(Aj )], (11)

and

Υ l
τ (θ, ε) :=

∑
j

∫
Aj

log[τ−1
Aj

(x)]dμ(x). (12)

Define now the box generalized dimensions Δ±
μ(θ, q) and Δ±

τ (θ, q), by using Υ ’s and
Δ’s in place of Γ ’s and D’s, respectively, in (5) and (6):

Δ±
σ (θ, q) := lim sup(inf)

1

q − 1

logΥσ (θ, ε, q)

log ε
, (13)

for q �= 1, while for q = 1:

Δ±
σ (θ,1) := lim sup(inf)

Υ l
σ (θ, ε)

log ε
, (14)

where σ can be either μ or τ .
Notice that it is possible to avoid dependence on the specific grid by taking the infimum

(or the supremum, according to the value of q) over all partitions in the definition of the
function Υτ (ε, q) [27]. We elect not to take this step for two reasons. The first is that this is
difficultly achievable in numerical applications and therefore forcing it into the theory does
not provide a good model of what is numerically observed. The second is that we shall strive
at obtaining results that do not depend on the particular grid selected, but apply to all and
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a fortiori also to dimensions defined with the infimum procedure included. A first instance
of this fact is to be met in the next section, where we introduce enhanced box dimensions,
based on an idea pioneered by Riedi.

5 Box Versus Generalized Measure Dimensions

The relations between box and generalized measure dimensions is a subject that has been
intensively studied, see e.g. [4, 10, 14, 27, 28, 31], with an effort towards proving their
equivalence, on the one side, and towards releasing the request of performing an infimum
over partitions, on the other side. We first review the known relations needed for our scope
in the following lemma, and then we present a new result that we believe to be of some
importance.

Lemma 2 The following relations exists between box and generalized measure dimensions:

Δ±
μ(θ, q) = D±

μ (q) for q > 0,

Δ±
μ(θ, q) ≥ D±

μ (q) for q ≤ 0.
(15)

Proof The full proof, including the non-trivial interval q ∈ (0,1], can be found in the com-
plete exposition [4]. Notice that no infimum procedure over ε-grids is involved. �

Therefore, measure box dimensions are independent of the choice of the grid θ for any
q > 0. Examples exist showing both such dependence and strict inequality w.r.t. generalized
dimensions for q < 0. The case q = 0 seems to be on less firm ground, see Sect. 9. Roughly
speaking, what might happen for negative q is the following: if a box Aj “barely touches”
the support of the measure μ close to one of its edges, its measure can be arbitrarily small,
independently of its size ε, so that Δ+

μ(θ, q) can become arbitrarily large. To avoid this effect
Riedi [31] introduced the following sums—compare (9):

Φμ(θ, ε, q) :=
∑

j s.t. μ(Aj )>0

μ(Aj )
q, (16)

where Aj is a box of side 3ε centered on the box Aj . In one dimension, for instance, Aj

consists of the union of Aj−1, Aj and Aj+1. The geometrical situation in two and more
dimensions can be easily pictured by the reader.

Using clever manipulations, Riedi has been able to prove that the dimensions generated
by the scaling of Φμ coincide with D±

μ (q) for q > 1. It actually follows from estimates in
[4] that equality can be proven for any q > 0. Although it is plausible that this also holds in
large generality for negative q as well (see the numerical results in [26]), we have not been
able to find a formal proof of this fact, that would hold in the most general setting adopted
in this paper. Yet, in this endeavor, we have discovered a new box quantity that achieves this
goal:

Theorem 1 For any θ ∈ Θ , the scaling behavior of the partition functions defined via:

Ψμ(θ, ε, q) :=
∑

j s.t. μ(Aj )>0

μ(Aj )μ(Aj )
q−1, (17)
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for all q �= 1 and

Ψ l
μ(θ, ε) :=

∑
j s.t. μ(Aj )>0

μ(Aj ) log[μ(Aj )], (18)

for q = 1 yields the generalized dimensions D±
μ (q).

Proof of Theorem 1 is a direct consequence of the auxiliary results collected in:

Lemma 3 For any θ ∈ Θ , the following inequalities hold:

Γμ(ε, q) ≤ Ψμ(θ, ε, q) ≤ Φμ(θ, ε, q), q ≥ 1; (19)

Γμ(ε, q) ≥ Ψμ(θ, ε, q) ≤ Φμ(θ, ε, q), q ≤ 1; (20)

Γμ(kε, q) ≤ Ψμ(θ, ε, q), q ≤ 1; (21)

Γμ(kε, q) ≥ Ψμ(θ, ε, q), q ≥ 1; (22)

Γ l
μ(kε) ≥ Ψ l

μ(θ, ε) ≥ Γ l
μ(ε). (23)

In the above, k is a fixed multiplier that depends only on the Euclidean dimension of the
space X.

Proof To prove the first inequality we follow [31]. Since

Γμ(ε, q) :=
∫

X

dμ(x)[μ(Bε(x))]q−1 =
∑

j

∫
Aj

dμ(x)[μ(Bε(x))]q−1 (24)

and since Bε(x) ⊂ Aj when x ∈ Aj , q ≥ 1,

Γμ(ε, q) ≤
∑

j

∫
Aj

dμ(x)[μ(Aj )]q−1 = Ψμ(θ, ε, q) ≤ Φμ(θ, ε, q). (25)

Equally,

Γ l
μ(ε) ≤

∑
j

∫
Aj

dμ(x) log[μ(Aj )] = Ψ l
μ(θ, ε). (26)

Conversely, when q ≤ 1, the first inequality in (25) is reversed, while the second still
holds:

Γμ(ε, q) ≥
∑

j

∫
Aj

dμ(x)[μ(Aj )]q−1 = Ψμ(θ, ε, q) ≤ Φμ(θ, ε, q). (27)

Next, we use the fact that Aj ⊂ Bkε(x) when x ∈ Aj and k is a fixed multiplier, as in Sect. 6,
to obtain, still for q ≤ 1

Γμ(kε, q) =
∑

j

∫
Aj

[μ(Bkε(x)]q−1dμ(x)

≤
∑

j

∫
Aj

[μ(Aj )]q−1dμ(x) =
∑

j

μ(Aj )[μ(Aj )]q−1 = Ψμ(θ, ε, q). (28)
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Finally, for q ≥ 1, we get

Γμ(kε, q) ≥
∑

j

∫
Aj

[μ(Aj )]q−1dμ(x) = Ψμ(θ, ε, q), (29)

Γ l
μ(kε) ≥

∑
j

∫
Aj

dμ(x) log[μ(Aj )] = Ψ l
μ(θ, ε). (30)

�

Theorem 1 asserts that the grid-dependent sums Ψμ(θ, ε, q) give rise to a set of dimen-
sions that are independent of the grid θ and coincide with the generalized dimensions D±

μ (q)

for all values of q . Observe that, from a numerical point of view, the sums Ψμ(θ, ε, q) can
be evaluated with the same effort required for computing the original sums (9) or Riedi’s
extension (16): all one needs to know is the value of the box measures μ(Aj ). We therefore
believe that Theorem 1 can become a new tool in the multifractal analysis of measures.

6 Box Versus Generalized Return Time Dimensions

In a symmetrical way to what done in the previous section for measure dimensions, we
now compare box and generalized return time dimensions, Δ±

τ (θ, q) and D±
τ (q). Then, we

introduce a new box partition functions for return times, Ψτ , analogous to the Ψμ of the
previous section. We prove that this box partition function yields the generalized return time
dimensions D±

τ (q) for all values of q , independently of the grid θ .

Proposition 1 The box return time dimensions Δ±
τ (q) are always larger than, or equal to,

their generalized counterparts, for all values of q:

Δ±
τ (θ, q) ≥ D±

τ (q). (31)

Proof Fix a specific grid θ and let j (x) be the index of the hypercube of side ε containing
the point x. Then, Aj(x) is enclosed in the ball of radius kε centered at x, with a fixed
multiplier k ≥ 1 that can be chosen as a function only of the (Euclidean) dimension of
the space. This implies that τBkε(x)(x) ≤ τAj (x)(x) for all x. Therefore, we split the integral
defining Γτ (kε, q) over the partition of side ε,

Γτ (kε, q) =
∫

X

τ
1−q

Bkε(x)(x)dμ(x) =
∑

j

∫
Aj

τ
1−q

Bkε(x)(x)dμ(x), (32)

and we use this inequality, first for 1 − q ≥ 0, to get

Γτ (kε, q) ≤
∑

j

∫
Aj

τ
1−q

Aj
(x)dμ(x) = Υτ (θ, ε, q). (33)

For 1 − q ≤ 0 we obtain the reverse inequality. In force of these inequalities, an immediate
calculation provides the thesis. As before, the case q = 1 requires a separate treatment:

Γ l
τ (kε) =

∑
j

∫
Aj

log[τ−1
Bkε(x)

(x)]dμ(x) ≥
∑

j

∫
Aj

log[τ−1
Aj

(x)]dμ(x) = Υ l
τ (θ, ε). (34)
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Using this information in the limits (5), (6) yields the thesis. �

The estimates in the previous proof help us also to establish existence of the return time
partition functions for q ≥ 0.

Lemma 4 The partition sums Γτ (ε, q) and Υτ (θ, ε, q), as well as Υ l
τ (θ, ε) and Γ l

τ (ε) exist
for any θ ∈ Θ , q ≥ 0.

Proof Existence is trivial for q > 1. If 0 ≤ q ≤ 1 the functions Υτ (θ, ε, q) and Υ l
τ (θ, ε) exist

because of Kac theorem [22]. Then, the inequality (33), valid for q ≤ 1 and the inequality
(34) imply that also Γτ (ε, q) and Γ l

τ (ε) exist. �

The ideas exploited in the previous section can also be used to construct a box quantity
capable of generating the generalized return time dimensions Dτ(q). This is defined via

Ψτ (θ, ε, q) :=
∑

j

∫
Aj

τ
1−q

Aj
(x) dμ(x), (35)

for q �= 1, and, for q = 1 via

Ψ l
τ (θ, ε) :=

∑
j

∫
Aj

log(τ−1
Aj

(x)) dμ(x). (36)

Difference with (10) has to be appreciated: the integral is taken over the set Aj , but the
return time is computed when x gets back into the larger set Aj , defined as in Sect. 5.

Theorem 2 The scaling behavior of the partition functions Ψτ (θ, ε, q) for all q �= 1 and
Ψ l

τ (θ, ε) for q = 1 yield the generalized dimensions D±
τ (q) for any θ ∈ Θ .

Proof Let again j (x) be the index of the hypercube of side ε containing the point x. The
key point is that

Bε(x) ⊂ Aj(x) ⊂ Bkε(x) (37)

with a dimension-dependent constant k. Therefore,

τBε(x)(x) ≥ τAj(x)
(x) ≥ τBkε(x)(x), (38)

which leads to

Γτ (ε, q) =
∑

j

∫
Aj

τ
1−q

Bε(x)(x)dμ(x) ≤ Ψτ (θ, ε, q) ≤ Γτ (kε, q) (39)

for q ≥ 1 and to a reverse chain of inequalities when q ≤ 1. The logarithmic partition func-
tion, to be used for q = 1, satisfies

Γ l
τ (ε) =

∑
j

∫
Aj

log(τ−1
Bε(x)(x))dμ(x) ≤

∑
j

∫
Aj

log(τ−1
Aj(x)

(x))dμ(x) = Ψ l
τ (θ, ε), (40)
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and

Ψ l
τ (θ, ε) ≤

∑
j

∫
Aj

log(τ−1
Bkε(x)(x))dμ(x) = Γ l

τ (kε), (41)

from which the thesis follows. �

Remark that the geometric relation in (37) shows that return time dimensions are some-
how performing the same kind of action implied in Riedi’s enlarged box idea. Also remark
that one is free to chose a different grid θ at any value of ε.

The rôle of the partition function Ψτ (θ, ε, q) goes well beyond numerical simulations: it
will be crucial for the proof of Theorems 4 and 5.

We end this section by showing the existence of a particular combination of Υτ (θ, ε, q)

that also yields the generalized dimensions for q larger than one. This is defined as follows.
Fix a grid θ0 in Rd and a value ε > 0. Let ei , i = 1, . . . , d unit orthogonal vectors giving the
direction of the grid. On this basis, construct 3d parallel grids with the same directions of
θ0: call them θl , l = 0, . . . ,3d − 1. The first of these grids is the original θ0, the others have
origins shifted by lattice vectors of the kind ε

∑d

i=1 niei , where the ni can take the values
0,1,2. For each of these grids, consider boxes of side 3ε, and on this basis, construct the
box partition function

Υ̃τ (θ0, ε, q) :=
3d−1∑
l=0

Υτ (θl,3ε, q). (42)

Proposition 2 The box partition function Υ̃τ (θ0,3ε, q) yields the generalized dimensions
D±

τ (q) for any q > 1, independently of the choice of the grid.

Proof Let θ0 be a given grid. Obviously, one has

Ψτ (θ0, ε, q) :=
∑

j

∫
Aj

τ
1−q

Aj
(x) dμ(x) ≤

∑
j

∫
Aj

τ
1−q

Aj
(x) dμ(x), (43)

where each integral has been extended to a larger domain. The summation index j runs
over all boxes of size ε, while the enlarged boxes Aj have side 3ε and each of these is
composed of 3d smaller ones, d being the euclidean space dimension. Neighboring boxes
Aj overlap, but at the same time one can part the j summation into 3d different sets of non-
overlapping, adjacent boxes. These are precisely defined by the θl grids defined above, so
that (43) becomes

Ψτ (θ0, ε, q) ≤
3d−1∑
l=0

Υτ (θl,3ε, q) = Υ̃τ (θ0, ε, q). (44)

The above equation is valid for all values of q . Let now q > 1. Then, since Υτ (θ, ε, q) ≤
Γτ (kε, q) for any θ (see (33)) and using also (39), we find

Γτ (ε, q) ≤ Ψτ (θ0, ε, q) ≤
3d−1∑
l=0

Υτ (θl,3ε, q) = Υ̃τ (θ0, ε, q) ≤ 3dΓτ (3kε, q). (45)

The by-now usual technique proves the thesis. �
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7 Kac Theorem and Moment Inequalities

We need to bridge the gap between measure and return time dimensions. To do this, our
main tool will be Kac theorem [22], that we put at work in this section. For any measurable
set A of positive measure, define the discrete return time measure νA via

νA({j}) := μ({x ∈ A s.t. τA(x) = j})/μ(A). (46)

In words, νA({j}) is the normalized measure of the set of points of A that return to A in j

time steps. Obviously, νA is a measure supported on the positive integers, a fact that will be
exploited momentarily. Poincaré Theorem guarantees that νA is a probability measure:

∞∑
j=1

νA({j}) = 1. (47)

We shall study the moments of this measure. For s ∈ R, let νA
s be:

νA
s :=

∞∑
j=1

j sνA({j}) = 1

μ(A)

∫
A

[τA(x)]sdμ(x). (48)

Define also the logarithmic moment:

νA
l :=

∞∑
j=2

log(j)νA({j}). (49)

Under the ergodicity hypothesis that we are assuming throughout, Kac theorem fixes the
value of the first moment of this measure:

νA
1 = 1/μ(A). (50)

The key ingredient of our theory is the fact that all moments νA
s can be put in relation to the

latter, that is to say, to μ(A). In fact, we have the following lemma.

Lemma 5 Let ν be a probability measure supported on [1,∞). Let νs be its moments, allow-
ing for an infinite value of these latter. As a function of s, νs is monotonic, non-decreasing.
Furthermore,

νs ≤ (ν1)
s for 0 ≤ s ≤ 1,

νs ≥ (ν1)
s for s ≤ 0, or s ≥ 1.

(51)

Proof This lemma is elementary. It follows from a judicious use of Hölder inequality, to-
gether with the significant piece of information that the shortest value of return times is one,
so that ν is a probability measure supported on [1,∞). �

Lemma 6 In the same hypotheses of Lemma 5, one has νl := ∫
log(x)dν(x) ≤ log(ν1).

Proof Since ν is a probability measure, this is Jensen’s inequality. �

Because of the observations made at the beginning of this section, the above lemmas
apply to νA

s , the moments of the return times of points in any positive measure set A, when
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taken with respect to the normalized measure dμA(x) = 1
μ(A)

dμ(x). As such, the formulae
(51) extend the content of Kac theorem to all moments. Later in the paper, we shall find ex-
amples where inequalities (51) are strict, as well as examples where they hold as equalities.
We shall now investigate the mathematical implications of these results to the dimension
problem.

8 Inequalities Between Measure and Return Time Box Dimensions

On the basis of the theory of the previous section, Lemmas 5 and 6, we can now study the
quantities Υσ (θ, ε, q) and the associated dimensions Δ±

σ (θ, q).

Proposition 3 The box dimensions Δ±
σ (θ, q), σ = μ,τ , for any θ ∈ Θ are linked by the

inequalities

Δ±
τ (θ, q) ≥ Δ±

μ(θ, q) for q < 0,

Δ±
τ (θ, q) ≤ Δ±

μ(θ, q) for q > 0,

Δ±
τ (θ,0) = Δ±

μ(θ,0).

(52)

Proof Observe that ∫
Aj

τ
1−q

Aj
(x)dμ(x) = μ(Aj )ν

Aj

1−q (53)

so that

Υτ (θ, ε, q) =
∑

j s.t. μ(Aj )>0

μ(Aj )ν
Aj

1−q . (54)

Therefore, using Lemma 5 and Kac theorem, (50), we get

Υτ (θ, ε, q) ≤
∑

j s.t. μ(Aj )>0

μ(Aj )
q = Υμ(θ, ε, q) (55)

for q ∈ (0,1) and Υτ (θ, ε, q) ≥ Υμ(θ, ε, q) in the opposite case. Using now (2) and (4) we
can prove the two inequalities in (52), for q �= 1. The case q = 1 can be treated by writing

Υ l
τ (θ, ε) = −

∑
j s.t. μ(Aj )>0

μ(Aj )ν
Aj

l . (56)

Using Lemma 6, we arrive at Υ l
τ (θ, ε) ≥ Υ l

μ(θ, ε) and hence the thesis follows. Finally,
direct computation shows that Υτ (θ, ε,0) = Υμ(θ, ε,0) so that Δ±

τ (θ,0) = Δ±
μ(θ,0). �

9 All Things Considered: Main Theorems, Comments and Examples

We can now complete our work, first by linking together the inequalities obtained so far and
then by commenting on their optimality with the aid of the von Neumann–Kakutani Map
[35] and of an intermittent map due to Pomeau–Manneville [30] and Gaspard–Wang [9].
Recall that we have put ourselves in a rather general setting, by requiring only ergodicity of
the dynamical system considered. Our fundamental result is therefore:
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Theorem 3 When the dynamical system (X,T , A,μ) is ergodic and X is a compact metric
space enclosed in Rn, for any θ ∈ Θ , the different dimensions defined in this work are linked
by the inequalities:

D±
τ (q) ≤ Δ±

τ (θ, q) ≤ Δ±
μ(q) = D±

μ (q), for q > 0, (57)

Δ±
τ (θ, q) ≥ Δ±

μ(θ, q) ≥ D±
μ (q), for q ≤ 0, (58)

Δ±
τ (θ, q) ≥ D±

τ (q), for q ≤ 0, (59)

and, for q = 0,

Δ±
τ (θ,0) = Δ±

μ(θ,0). (60)

Proof Use Lemma 2 together with Propositions 1 and 3. �

Remarks and comments are now in order.
The only equality that we have proven to hold in full generality is between Δ±

τ (θ,0)

and Δ±
μ(θ,0), obviously when computed on the same grid θ . It is believed that Δ±

μ(θ,0) =
D±

μ (0) should hold in large generality [4]. When this is the case, we can also assess that

Δ±
τ (θ,0) does not depend on the grid θ and this provides us with a means of computing

the capacity dimensions D±
μ (0) via return times. It is remarkable that no exceptions to the

desired equality have been known until very recently: that is, only a case (still unpublished)
is known where Δ−

μ(θ,0) is strictly larger than D−
μ (0) (S. Tcheremchantsev, private com-

munication).
The situation occurring for q > 0 is fully described by a single chain of inequalities,

(57). We want now to show that they can be strict. In fact, the return time dimensions D±
τ (q)

may decay to zero when q tends to infinity even when measure dimensions do not. This can
be regarded as a consequence of “short returns”, a rather general occurrence. In fact, for
m = 1,2, . . . let

ρ(ε;m) := μ({x ∈ X s.t. τBε(x)(x) = m}) (61)

be the distribution of the first return times of a point x into the ball of radius ε centered at x.
Observe that this is a global quantity, since x takes values in all of X. Also consider the
integrated distribution R(ε; k):

R(ε; k) :=
k∑

m=1

ρ(ε;m). (62)

We have the following

Lemma 7 If for some k ≥ 1, there exist constants C and δ > 0 such that R(ε; k) ≥ Cεδ ,
then D±

τ (q) ≤ δ
q−1 for all q > 1.

Proof Let q > 1. Clearly,

Γτ (ε, q) =
∞∑

m=1

ρ(ε;m)m1−q ≥ k1−qR(ε; k) ≥ Ck1−qεδ, (63)

which yields the thesis. �
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Fig. 1 Graph of the von
Neumann–Kakutani map defined
in (68). Also drawn are the
slope-one line through the origin
and the sets J1 and A3

1

A similar lemma holds obviously also for Δ±
τ (θ, q). This lemma shows that, roughly

speaking, in order for dimensions not to tend to zero when q tends to infinity, the probability
of small returns must vanish faster than any power of ε, when ε tends to zero. We shall
momentarily describe a system, the von Neumann–Kakutani map, where to the contrary this
probability decays as ε and the inequalities (57) are strict for q > 2.

In a previous work [18] we have outlined another mechanism for short returns: the ex-
istence of fixed points of a continuous map T . Indeed, R(ε;1) can be bounded from below
by the measure of a box of radius proportional to ε centered at any fixed point. This latter
scales, for small ε, with the local dimension at the fixed point, a value that can be used in
Lemma 7. We must remark that in the examples presented in [18] such local dimensions
yield an upper bound to the true D±

τ (q), while the exact asymptotic result should involve
the correlation dimension Dμ(2) (see below).

Let us now consider the case q < 0. In full generality, we can only establish the shorter
chains of inequalities (58) and (59). We are not able to perform other comparisons. Contrary
to what might seem at first blush, this is not the result of a deficiency of our technique. In
fact, as we have remarked in Sect. 5, it may happen that Δ+

μ(θ, q) be larger than D+
μ (q),

or even infinite, the reason not being any peculiarity of the measure μ, but an unfortunate
choice of the grid θ . In turns, this fact also “spoils” Δ+

τ (θ, q), because of the inequality (58),
but not D+

τ (q), which is smaller than Δ+
τ (θ, q) and, as such, is not linked to Δ+

μ(θ, q).
This happens precisely for the von Neumann–Kakutani map [35], described in detail in

Sect. 11 and pictured in Fig. 1, whose absolutely continuous invariant measure is the uniform
Lebesque measure over the unit interval. This map T : [0,1] → [0,1] is a sort of infinite in-
tervals exchange map that permutes diadic sub-intervals of any order. In this permutation,
points in any binary interval of length 2−n (for any integer value of n) “visit once” all re-
maining intervals before returning home: see Lemma 8 in Sect. 11. From the point of view
of return times, this is a sort of dream situation, where all points return in a time τ = 2n, that
is exactly equal to the inverse of the measure of the interval. As a consequence, for these
sets, formulae (51) hold as equalities for all real values of s. Nonetheless, Grassberger and
Jensen et al. conjecture is verified only partially for this dynamical system, as the following
theorem shows:
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Theorem 4 In the dynamical system (T , [0,1], λ), where T is the von Neumann–Kakutani
map defined in (68) and λ is the Lebesgue measure, the dimensions defined in this work take
the values:

D±
τ (q) =

{
1 for q ≤ 2,

1
q−1 for q > 2. (64)

Moreover, for all grids θ ,

Δ+
τ (θ, q) = Δ+

μ(θ, q) = ∞ for q < 0. (65)

Finally, there are an infinite number of grids θ for which

Δ+
τ (θ, q) = 1 for q ≥ 0,

Δ−
τ (θ, q) = 1 for q ≤ 0.

(66)

Proof See Sect. 12. �

Recall now that for the Lebesgue measure on the unit interval, for any θ , we have that
Δ−

μ(θ, q) = D±
μ (q) = 1 for any q , Δ+

μ(θ, q) = 1 for q ≥ 0 and Δ+
μ(θ, q) = ∞ for q < 0.

Therefore, in this case, measure and return time generalized dimensions D±
μ (q) and D±

τ (q)

coincide for all q ≤ 2. At the same time, for q < 0, Δ+
τ (θ, q) and Δ+

μ(θ, q) are affected by
the “edge effect” discussed above and feature a “pathological” value.

As a consequence of the short-returns phenomenon discussed earlier in this section,
Lemma 7, D±

μ (q) and D±
τ (q) differ for q > 2, and the latter dimensions vanish for large q .

Observe also the “phase transition” behavior occurring at q = 2. Consider finally that, by
choosing particular grids, we can obtain equality also for grid dimensions, when taking the
superior limit (for q > 0) and the inferior limit in the opposite case.

We conjecture that what observed for this map is a rather common situation: that is to
say, we expect that

Conjecture 1 For a large class of ergodic dynamical systems D±
τ (q) = D±

μ (q) for qc <

q ≤ 2 (qc being the lowest value of q for which partition functions of return times are finite,
recall Lemma 4 and see below for an example) and D±

τ (q) = D±
μ (2)/(q − 1) for q ≥ 2

(exactly, or at least asymptotically for large q).

At this point, it is relevant to quote the results of [6] that have already been mentioned in
Sect. 1. They hold under strong assumptions on the dynamical system under investigation
and for cylinders rather than balls (i.e. without relation to the geometric structure implied by
the distance function). In fact, it has been shown that for Bowen–Gibbs measures, defining
partition functions and generalized dimensions for entrance times (rather than return, see the
remark about Grassberger technique in Sect. 2) in dynamical cylinders, these latter coincide
with Renyi entropies for q < 2 and behave as P (2φ)/(q − 1) for larger q . Here P is the
topological pressure of the potential φ defining the Bowen–Gibbs measure. For return times
in cylinders, though, only the statement for q < 1 has been derived. These results outline
interesting techniques that might possibly be improved, and complemented with geometric
considerations, to prove in vast generality the relations between measure and return time di-
mensions for balls, as originally conjectured in [18] and formulated above in a more precise
form.
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Fig. 2 Graph of the
Gaspard–Wang map defined in
(107), for p = −3/2, see Sect. 13
for details. Also drawn is the
slope-one line through the origin

Let us now move to a final example, which shows that inequalities between measure and
return time dimensions may be strict also for negative values of q: in fact, D±

τ (q) and Δ±
τ (q)

may be infinite for all q smaller than a critical value qc < 0, while on the contrary D±
μ (q)

is finite. This is notably the case of intermittent maps, the simplest of which is perhaps the
Gaspard–Wang [9] piece-wise linear approximation of the Pomeau–Manneville map [30]
described in Sect. 13 and pictured in Fig. 2. This is a map of the unit interval into itself, with
an absolutely continuous invariant measure. Zero is a fixed point of the map and the dynam-
ics may spend arbitrarily long time spans in its neighbourhood. For this dynamical system
we can prove the following theorem, that demonstrates a case where D±

τ (q) > D±
μ (q) for

sufficiently negative q , an inequality that is specific to this particular case and is not included
among those in formulae (58) and (59).

Theorem 5 In the dynamical system (T , [0,1],μ), where T is the Gaspard–Wang map
defined in (107) with parameter p < −1 and μ is its unique absolutely continuous invariant
measure, return time dimensions satisfy D±

τ (q) = Δ±
τ (q) = ∞ for all q < qc := p+1, while

measure dimensions take the values D±
μ (q) = 1 for q ≤ −p and D±

μ (q) = (1 + 1
p
)

q

q−1 for
q ≥ −p.

Proof Is detailed in Sect. 13. It makes use of the partition function presented in Theo-
rem 2. �

10 Conclusions

We can now conclude by saying that the idea to use return times in a straightforward way
to compute generalized measure dimensions, following the programme whose history has
been briefly outlined in the Introduction, is only applicable after a detailed analysis of the
dynamical system considered.

The general inequalities that we have derived clarify the mutual relations among the di-
mensions that we have defined. As a by-product, these inequalities provide universal bounds
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for the global statistics of return times that hold for all ergodic dynamical systems possessing
a given invariant measure μ, and indeed also for a large class of ergodic stochastic processes
having invariant distribution μ. Remark in fact that the formalism developed in this paper
also applies when T is a stochastic process, rather than a deterministic dynamical map.

We have found examples where Dμ(q) and Dτ(q) differ for q > 2, or for q < qc . At the
present moment, we do not know of any case where Dμ(q) and Dτ(q) are not equal in the
interval (qc,2). Nevertheless, we are not able to prove such equality in full generality with
the means employed in this paper. We consider this, as well as the precise formulation and
proof of Conjecture 1, to be a point of utmost interest for future investigations.

Turning from the general case to specific applications, we feel that one could prove part
or all of Conjecture 1 with problem-specific tools. This might indeed be good news, that
would partly fulfill the original Grassberger and Jensen et al. program. We look with partic-
ular interest to dimensions with negative q , that are known to be more elusive to compute
numerically and more intriguing theoretically than those for positive q [10, 26].

Finally, whether linked to generalized measure dimensions or not, the moments of return
times studied in this work deserve attention in their own, in our view. In fact, at difference
with local quantities studied in the literature (such as probabilities of return to shrinking
neighborhoods of a given point—a well examined topic, see e.g. [1, 17, 20, 25, 32]) they
provide a global characteristic of the dynamics of a system.

The remainder of this paper consists of three sections giving details and proofs for the
two maps quoted in this paper.

11 The Map of von Neumann and Kakutani

In this section we present the details of the intervals exchange map due to von Neumann
and Kakutani [35], mentioned in Sect. 9. The basic properties of this map are known, but we
prefer to re-derive them here for completeness and because they help us to understand some
subtleties of return times for this map.

We start by defining two families of intervals in [0,1]. The first is

Jk := [1 − 2−k,1 − 2−k−1), k = 0,1, . . . . (67)

Clearly, X = [0,1] = ⋃∞
n=0 In ∪ {1}. Then, the map of von Neumann and Kakutani, T , is

defined as follows:

T (x) :=
{

x − 1 + 2−k + 2−k−1 for x ∈ Jk ,
0 for x = 1.

(68)

The map T is piece-wise continuous, composed of an infinite number of affine segments
and invertible (except for the point x = 1 which has no preimage).

In addition, for any positive integer n, define a measurable partition of X in (open) binary
intervals:

An
j := (j2−n, (j + 1)2−n), j = 0, . . . ,2n − 1. (69)

All but a finite number of points in X are covered by the partition. Exception are the bound-
ary points ζ n

k = k2−n, with k = 0, . . . ,2n. Then, it is easy to see that

Lemma 8 For any positive n, the map T permutes the family of intervals {An
j }. The permu-

tation is cyclic, of period N = 2n, in the in the sense that T N(An
j ) = An

j for any j , and no
shorter N exists with this property.
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Proof Let σ = σ1σ2 . . . σn be the binary expansion of j , defined as follows (notice the order
of digits):

j :=
n∑

k=1

σ k2n−k. (70)

Let also k(σ ) be the index of the first zero in σ :

k(σ ) := min{j ∈ N s.t. σj = 0}. (71)

Intervals An
j shall therefore be labelled as An

σ , where σ is a word of length n. We shall also

use the complementary digit function ·̄, where 0̄ = 1, 1̄ = 0.
All points in the interval An

σ can be written in binary form as x = 0.ω1 . . .ωnωn+1 . . . ,
where ωi = σi for i = 1, . . . , n and where ωn+1, . . . is any infinite sequence of digits (except
for the sequence composed of all ones). It can be verified that, in binary notation, the map T ,
(68), corresponds to the symbolic map S(ω) = .η1η2 . . . , with

ηj :=
{

ωj for j ≤ k(ω),
ωj for j > k(ω). (72)

Therefore, any interval An
σ is mapped into the interval An

η , labelled by the first n digits of η.
For this reason, with a slight misusage of notation, we shall indicate by S also the map
σ → η on the set of n-letter words, or equivalently via (70) on the set of integers [0,2n − 1].
The map S acts a cyclic permutation of all intervals An

σ , of period N = 2n, for any value
of n, the length of the word σ . �

An interesting consequence of the previous lemma is the following proposition,

Proposition 4 The Lebesgue measure λ on X is invariant and ergodic for the action of the
map T . Moreover, the dynamical system (X,T ,λ) is metrically and topologically transitive,
but not mixing.

Proof The first statement is almost immediate from the form of the map T , (68) and the first
part of Lemma 8: given any open interval I , its counter-image is a finite union of disjoint
intervals whose lengths add up to the length of I .

To prove ergodicity one needs to show that for any measurable sets B and C,

lim
m→∞

1

m

m−1∑
k=0

μ(T −k(B) ∩ C) = μ(B)μ(C). (73)

Let B and C be finite unions of binary intervals An
j at resolution n. Indicate with B and C the

sets of indices of the intervals composing the sets B and C, like in B := ⋃
j∈B An

j . Finally
let #(B) and #(C) be the cardinalities of these sets, respectively. Recall that T permutes the
intervals An

j as in An
j as in Lemma 8 and so does T −1. Therefore,

T −k(B) = T −k

(⋃
j∈B

An
j

)
=

⋃
j∈B

T −k(An
j ), (74)

and the intervals in the union above are disjoint, so that

μ(T −k(B) ∩ C) =
∑
j∈B

μ(T −k(An
j ) ∩ C). (75)
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Moreover, for any j and k, either T −k(An
j ) has empty intersection with C, or it coincides

with one of the binary intervals composing C. It is then convenient to just consider the
interval index map, that we have also indicated by T . Define therefore the set of “times” for
which such intersection is not empty:

Nn
C (j) := {k ∈ Z s.t. 0 ≤ k < 2n and T −k(j) ∈ C}. (76)

For each k ∈ Nn
C (j) we have that

μ(T −k(An
j ) ∩ C) = μ(T −k(An

j )) = μ(An
j ) = 2−n, (77)

and for k �∈ Nn
C (j), μ(T −k(An

j ) ∩ C) = 0. We then compute

2n−1∑
k=0

μ(T −k(B) ∩ C) =
∑
j∈B

2n−1∑
k=0

μ(T −k(An
j ) ∩ C)

=
∑
j∈B

∑
k∈Nn

C (j)

μ(An
j ) = 2−n

∑
j∈B

#Nn
C (j). (78)

Finally, observe that being T a cyclic permutation of the first 2n integers, T −k(j) ∈ C
holds #(C) times along any cycle of times of length 2n:

#Nn
C (j) = #(C), (79)

which means

1

2n

2n−1∑
k=0

μ(T −k(B) ∩ C) = 2−2n#(C)#(B) = μ(B)μ(C). (80)

This easily entails the limit (73) for binary intervals. Since these latter generate the Borel
sigma algebra, the result follows generally.

Topological transitivity (ergodicity) is easily implied by Lemma 8, since given any two
open sets B and C there exist an n > 0 and An

j , An
j ′ , 0 ≤ j, j ′ < 2n, such that An

j ⊂ B and
An

j ′ ⊂ C. Choose then k such that T k(j) = j ′ to obtain the result.
It is also immediate to see that strong mixing is not present: in fact, this is ruled out by

the cyclic nature of the images T −k(An
j ), for a single n, j .

Weak mixing can be ruled out by a careful usage of (80). �

The interesting properties of the map T so defined permit us to prove the following

Proposition 5 In the dynamical system (T ,λ) defined in this section, over the sequence
εn = 2−n, the return time partition function Ψτ (θ, ε, q) can be explicitly computed when θ

is the grid having origin at zero.

Proof Let εn = 2−n and consider the newly introduced partition function Ψτ (θ, ε, q), (35).
It requires the computation of τ

An
j
(x) for x ∈ An

j . This we shall do now.

Observe first that An
j = ⋃

i=−1,0,1 An
j+i , where obviously An

j := ∅ for j < 0 or j ≥ 2n.
Because of the Lemma 8, in the von Neumann–Kakutani map T , these times are independent
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of the point x in An
j and can be computed in terms only of the index map S. Let j = j (x)

the index of the binary interval containing x. Then,

τ
An

j
(x) = inf{k ≥ 1 s.t. Sk(j) ∈ {j − 1, j, j + 1}}. (81)

It is now possible (although complicated) to compute explicitly the distribution of first
return times of the index j into {j − 1, j, j + 1}. An example will be provided in the next
section. Observe that these return times over a finite set can take any value between one and
the cardinality of the finite set, 2n. Let �n

m the cardinality of the set of values of j for which
the return value is m. Then, the following formula holds:

�n
m =

⎧⎪⎨
⎪⎩

2l for m = 3 × 2l , l = 0, . . . , n − 3,
2n−2 for m = 2n−2,
2n−1 + 1 for m = 2n−1,
0 elsewhere.

(82)

Therefore, letting

ρ(n)(m) := μ({x ∈ X s.t. τ
An

j
(x) = m}) = 2−n�n

m (83)

we can define a family of distribution functions over the integers larger than, or equal to one,
according to which

Ψτ (θ, ε, q) :=
∑

j

∫
Aj

τ
1−q

Aj
(x) dμ(x) =

∞∑
m=1

m1−qρ(n)(m), (84)

with ε = 2−n. �

12 Proof of Theorem 4 on the Map of von Neumann and Kakutani

Consider the measurable partitions {An
j } of X in binary intervals of length 2−n defined

in (69) in Sect. 11 and let An
x be the element of the partition containing the point x. We

call n the order of the partition. Lemma 8 implies that

τAn
x
(x) = 2n, (85)

for any integer n and for any x ∈ X. We part the proof of Theorem 4 in several sections.

12.1 Part A, Where Large Balls Completely Cover Dyadic Intervals

In fact, when 2−n ≤ ε ≤ 2−n+1 the ball of radius ε centered at x covers the dyadic interval
including x: Bε(x) ⊃ An

x . Therefore,

τBε(x)(x) ≤ τAn
x
(x) = 2n. (86)

Choose q such that 1 − q ≷ 0. We now derive inequalities bounding the partition function
Γτ (ε, q) in both cases. Firstly,

∫
[τBε(x)(x)]1−qdμ(x) ≶

∫
[τAn

x
(x)]1−qdμ(x) = 2n(1−q). (87)
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Observe that substituting the inequalities linking ε and n one gets

logΓτ (ε, q) ≤ (q − 1) log ε (88)

for 1 − q > 0 and

logΓτ (ε, q) ≥ (q − 1)(log ε + log 2) (89)

for 1 − q < 0. This implies that

D±
τ (q) ≤ 1 (90)

for all values of q �= 1 (a similar treatment could also yield the case q = 1, we do not include
it here for conciseness).

12.2 Part B, Where We Exploit Balls Included in Dyadic Intervals of Order n

Let ε and n be related as:

1

8
2−n ≤ ε ≤ 1

4
2−n. (91)

Then, when x is close to the midpoint of the interval An
x , Bε(x) ⊂ An

x , so that

τBε(x)(x) ≥ τAn
x
(x) = 2n. (92)

The same inequality also holds for points close to zero and one, the extrema of X, because
in this case (X ∩ Bε(x)) ⊂ An

x . Collectively, all these points define the set Gn,ε . It is easy to
see that because of (91) the measure of this set amounts to at least half of the total measure.
We now take 1 − q > 0, so that

∫
X

[τBε(x)(x)]1−qdμ(x) ≥
∫

Gn,ε

[τBε(x)(x)]1−qdμ(x)

≥
∫

Gn,ε

[τAn
x
(x)]1−qdμ(x) ≥ 1

2
2n(1−q). (93)

Proceeding as above, we find that

D±
τ (q) ≥ 1 (94)

for all values of q ≤ 1. Together with (90) this implies that

D±
τ (q) = 1 (95)

for all values of q < 1.

12.3 Part C, Where We Exploit Balls Included in Dyadic Intervals of Orders 0 to n

Let the inequalities (91) still hold. We extend the argument of part B. Suppose that x does
not belong to Gn,ε . This means that x is within ε of any of the endpoints of the interval An

x

internal to [0,1]. Then, the ball Bε(x) is not included in An
x , but it stretches to reach one

neighboring element of the partition.
Forcefully, Bε(x) includes a boundary point of the measurable partition of order n, of the

form ζ n
k = k2−n, with k integer. Clearly, two cases are possible: either ζ n

k is an “even” point
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(k even, in which case it is also a boundary point of the partition of order n − 1), or it is
an “odd” point. If it is an odd point, Bε(x) is necessarily included in An−1

x and τBε(x)(x) ≥
τ
An−1

x
(x) = 2n−1. Let Gε,n−1 be the set of points x that are ε-close to odd boundary points

of the partition of order n. It is immediate that this set is composed of 2n−1 intervals of
length 2ε.

The construction can be clearly iterated, by considering among even boundary points of
level n those which are odd at level n − 1: this defines a new set of points Gε,n−2 consisting
of 2n−2 intervals of length 2ε. For any x belonging to this set, τBε(x)(x) ≥ τ

An−2
x

(x) = 2n−2

and so on. The last stage of the construction is the set Gε,0 = ( 1
2 −ε, 1

2 +ε), for which, rather
trivially, τBε(x)(x) ≥ τA0

x
(x) = 20 = 1.

The above proves the following formulæ: for any ε > 0 and n satisfying the inequalities
(91), one has:

X =
n⋃

j=0

Gε,j , (96)

with λ(Gε,j ∩ Gε,j ′) = 0 if j �= j ′ (recall that λ is the Lebesgue measure and that Gε,n has
been defined in point b), so to provide another measurable partition of X. Moreover,

2−n+j ≥ 2−n−1+j ≥ λ(Gε,j ) ≥ 2−n−2+j , (97)

for 0 ≤ j ≤ n − 1 and 1 ≥ 3
4 + 2−n−2 ≥ λ(Gε,n) ≥ 2−1. Finally,

τBε(x)(x) ≥ 2j (98)

for any x ∈ Gε,j and j = 0, . . . , n.
We can now evaluate the partition function: let 1 − q < 0, i.e. q > 1, so that

Γτ (ε, q) =
n∑

j=0

∫
Gε,j

[τBε(x)(x)]1−qdμ(x) ≤
n∑

j=0

λ(Gε,j )2
j (1−q) ≤

n∑
j=0

2−n+j 2j (1−q), (99)

where we have used the widest inequality in (97) to obtain a simpler formula. In fact, (99)
easily yields

Γτ (ε, q) ≤ G(q,n) := 2−n 2(2−q)(n+1) − 1

2(2−q) − 1
, (100)

where the function G(q,n) has been defined. Two cases must now be considered in the
asymptotics of G(q,n) as n tends to infinity, or equivalently ε goes to zero, according to
the inequalities (91). First, when 2 > q > 1 we find log(G(q,n)) ∼ εq−1, so that D±

τ (q) ≥ 1
and finally

D±
τ (q) = 1 (101)

for all values of q ≤ 2 in the other case, q > 2, we find log(G(q,n)) ∼ ε−1, so that

D±
τ (q) ≥ 1

q − 1
. (102)
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12.4 Part D, Where We Exploit the Return Properties of a Particular Sequence of Dyadic
Intervals

This is the last part of this proof. In Proposition 5 we have computed the return times
of dyadic intervals in their enlarged neighborhood, according to Sects. 5, 6. We need a
particular case of Proposition 5 that can be easily proven. It appears from (82) that for
any n there exist one interval An

j with return time 3 inside A
n

j . The index of this in-
terval is j = 2n−1 − 1 and its symbolic address is 01 . . .1. Let this value of j be fixed
in the following. It maps to 11 . . .1 and successively 0 . . .0 and 10 . . .0. It is easy to
see that the first and the last are neighboring intervals. In coordinates, the quasi-cycle is
An

j = ( 1
2 − 2−n, 1

2 ) → (1 − 2−n,1) → (0,2−n) → ( 1
2 , 1

2 + 2−n) = An
j+1. It contains the orbit

1 → 0 → 1
2 . The periodic sequence 1

2 → 1 → 0 → 1
2 does not belong to any orbit, but it is

arbitrarily well approximated by true orbits.
If we now take 2−n+2 ≥ ε ≥ 2−n+1 we have that Bε(x) ⊃ An

j+1 for any x in An
j and the

above implies that τBε(x)(x) ≤ 3 on An
j . Therefore, when 1 − q < 0,

∫
X

[τBε(x)(x)]1−qdμ(x) ≥
∫

An
j

[τBε(x)(x)]1−qdμ(x) ≥ 31−q2−n. (103)

This yields D±
τ (q) ≤ 1

q−1 for any q > 1 and finally

D±
τ (q) = 1

q − 1
(104)

for any q ≥ 2. This ends the proof of the part of the theorem concerning D±
τ (q).

12.5 Proof of the Results for Box Dimensions

As for the box dimension Δ±(θ, q), choose now the grid θ with origin at zero and consider
the sequence εn = 2−n. Recall (85). It implies that Υτ (θ, εn, q) = 2n(1−q) = ε

q−1
n . Then, for

all q �= 1

lim
n→∞

1

q − 1

logΥτ (θ, εn, q)

log εn

= 1. (105)

Let now q < 0. Clearly,

lim
n→∞

1

q − 1

logΥτ (θ, εn, q)

log εn

≥ lim inf
ε→0

1

q − 1

logΥτ (θ, ε, q)

log ε

:= Δ−
τ (θ, q) ≥ Δ−

μ(θ, q) = 1, (106)

where the second inequality is (59) and where the last equality can be easily obtained. Since
the first limit exists and is equal to one, (105), so is Δ−

τ (θ, q). For negative q a similar
argument applies, which now requires the superior limit. The same results are obviously
found when the origin of the grid θ is a point of the form k 2−m, with integer k and m. This
ends the proof of the theorem.



The Global Statistics of Return Times: Return Time Dimensions 725

13 The Map of Gaspard and Wang

We now describe the piece-wise linear approximation of the Pomeau Manneville intermittent
map [30] due to Gaspard and Wang [9]. Let {cj }j∈N be an ordered, decreasing sequence of
real numbers between zero and one such that c0 = 1 and such that cj tends to zero as j tends
to infinity. Let Ij := (cj+1, cj ) be the elements of a partition of [0,1] into open intervals of
length lj = cj − cj+1. The map T is defined as the transformation which maps affinely and
with positive slope Ij onto Ij−1 for j ≥ 1 and I0 onto [0,1]:

T (x) = (x − cj+1)
lj−1

lj
+ dj , (107)

for x ∈ Ij and where we set l−1 = 1 and dj = cj for j > 0, d0 = 0. Because this behavior, it
is also called an infinite renewal chain map. We study in this work the family of such maps,
parameterized by p < −1, for which

cj = (j + 1)p. (108)

Proof of Theorem 5 The absolutely continuous invariant measure on [0,1], whose density
is constant on each Ij can be easily computed. One finds

μ(Ij ) = cja (109)

where the parameter a = μ(I0) can be chosen so to normalize the measure, of course when
the sequence {cj }j∈N is summable, which is always the case when p < 1. The motion of this
dynamical system is such that I0 can be also parted into an infinity of adjacent intervals Kj ,
j = 0, . . . , whose points return to I0 after exactly j + 1 steps: if x ∈ Kj , τI0(x) = j + 1.
One finds easily that

T (Kj ) = Ij , (110)

so that all Kj can be obtained by an affine transformation of Ij : Kj = (1 − c1)Ij + 1. The
measure of Kj is proportional to its length and hence to the length of Ij :

μ(Kj ) = alj . (111)

Therefore, not all moments of the return times of points of I0 into itself are finite: in fact,

∫
I0

τ
1−q

I0
(x)dμ(x) =

∞∑
j=0

∫
Kj

τ
1−q

I0
(x)dμ(x) = a

∞∑
j=0

(j + 1)1−q lj . (112)

Since lj ∼ jp−1, the above integral is convergent only when q > p + 1. Also observe that
formulae (51) are here strict inequalities.

Now, let us cover the unit interval by a box grid of side ε and let’s evaluate the partition
function Ψτ (θ, ε, q). Let us consider the particular box A that contains the point c1 in its
interior. If c1 is a boundary point, consider the box whose left extremum is c1. For any
ε > 0 the box A contains an infinite number of Kj , those with j > jε . At the same time, the
enlarged box A is enclosed in the union I0 ∪ I1 ∪ · · · ∪ Im, when m depends on ε. If ε is
sufficiently small, we can take m = 1. Since Kj maps to Ij and this to Ij−1, et cetera, the
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time to return to A is larger that the time to enter Im from Kj . This latter is, clearly, j − m.
Entering this information in (35) we find that, when q < 1,

Ψτ (θ, ε, q) ≥
∫

A

τ
1−q

A
(x)dμ(x) ≥

∑
j>jε

μ(Kj )(j − m)1−q . (113)

Therefore, as in (112), the sum diverges for q < p + 1 and D±
τ (q) = ∞ for these values.

Because of (59) the same happens for Δ±
τ (q).

Finally, since the density of μ over Ij grows as j , which is the same as x
1
p , standard

theory gives the formula for the generalized dimensions Dμ(q). �

Notice that divergence of certain moments of entrance and return times in cylinders for
the Manneville–Pomeau map has been exhibited in [6]. Further details on this map, and a
local analysis of return and entrance times can be found in [5] in the case when the invariant
measure is infinite.
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